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ABSTRACT: The space accessed by a folding macromolecule is vast,
and how to best project computer simulations of protein folding
trajectories into an interpretable sequence of discrete states is an open
research problem. There are numerous alternative ways of associating
individual configurations into collective states, and in deciding on the
number of such clustered states there is a trade-off between human
interpretability (smaller number of states) and accuracy of representation
(larger number of states). Here we introduce a trajectory likelihood
measure for assessing alternative discrete state models of protein folding.
We find that widely used rmsd-based clustering methods require large
numbers of initial states and a second agglomeration step based on kinetic
connectivity to produce models with high predictive power; this is the
approach taken in elegant recent work with Markov State Models of
protein folding. In contrast, we find that grouping of states based on
secondary structure pairings or contact maps, when refined with K-means clustering, yields higher likelihood models with many
fewer states. Using the most predictive contact map representation to study the folding transitions of the WW domain in very
long molecular dynamics simulations, we identify new states and transitions. The methods should be generally useful for
investigating the structural transitions in protein folding simulations for larger proteins.

■ INTRODUCTION

Exciting breakthroughs in computer hardware have made
possible simulation of proteins for time scales longer than the
time required to fold, allowing observation of multiple folding
and unfolding events.1,2 Simulations spanning the ∼micro-
second folding times of even the smallest proteins require
trajectories of >106 configurations, and methods for associating
these configurations into a much smaller number of significant
states are of considerable importance for analyzing the key
structural transitions.3,4 Traditional methods have required
projection of simulation data onto one- or two-dimensional
reaction coordinates,5−19 but thus can obscure important
features of the folding free-energy landscape.20

Markov State Models (MSMs) have overcome this limitation
by representing dynamics as a network of transitions between
discrete states and have been used to analyze folding pathways
for many proteins of interest.21−31 A MSM is constructed by
first using geometric similarity to combine very similar
configurations into discrete microstates, assuming that high
geometric similarity implies high kinetic connectivity. Sub-
sequently, these microstates are assembled into sets of
kinetically related microstates, called macrostates. Care must
be taken in defining the initial set of states, as incorrect initial
grouping of configurations can result in incorrect conclusions

about folding dynamics if, for example, a microstate contains
configurations separated by high-energy barriers.32

There are many open questions in constructing MSMs of
protein folding. In order to assign configurations from different
trajectories to discrete states, some clustering based on
geometric similarity is clearly necessary. What distance measure
to use, to what extent configurations should be clustered, and
how this impacts the resulting model are not fully understood.
To address these and related problems, quantitative metrics for
evaluating alternative models are needed.33,34 Here we describe
a likelihood measure for assessing alternative MSMs and
investigate the trade-off between geometric and kinetic based
lumping as well as alternative structural similarity metrics for
grouping configurations.

■ METHODS
Representations and Distance Measures. Secondary

Structure Pairing. Hydrogen-bonding patterns were identified
and classified for each configuration using the Rosetta
software.35−38 The peptide conformation in each trajectory
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snapshot (configuration) was represented by a feature vector
describing the sets of paired strands and their registers,
pleatings, and orientations. Configurations with a common
feature vector are assigned to the same microstate. Details of
the feature descriptions and the assignment procedure are in
the Supporting Information. Depending on the detail of the
description the number of distinct feature vectors ranged from
175 to 4857.
Contact Map. Residues separated by more than one residue

in sequence were considered in contact if the Cα residues were
within 8 Å. Clustering of contact maps was performed
according to the greedy K-centers algorithm,39 using Euclidean
distance to measure similarity. K-means refinement40 was
performed for 20 iterations using the greedy K-centers cluster
assignments as input.
Rmsd. Cα coordinates were clustered using greedy K-centers

clustering and root-mean-squared-deviation (rmsd) as the
distance measure as described previously.27,41

MSM Model Construction. Transition matrices were
constructed with a lag time of 100 ns, as determined from
convergence of implied time scale plots26 (Supporting
Information, Figure S1). Macrostates were obtained from the
eigenvectors of the transition matrices using Perron clustering42

as described previously (see Supporting Information).
Log-Likelihood Metric. We define the likelihood of a

Markov Model given a set of trajectories to be the probability of
observing the trajectories given the model. Given a set of
assignments of configurations {ct} to states st, the probability of
a particular configuration trajectory is given by a two-level
Markov Model
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where st is the state assigned to configuration ct occupied at step
t in the trajectory, p(st) is the probability of state st, p(st+1|st) is
the probability of transitioning to state st+1 from state st, and
p(ct|st) is the probability of configuration ct given that the
system s in state st. p({ct}) is the probability of the configuration
trajectory, p({st}) is the probability of the state trajectory, and
p({ct}|{st}) is the probability of the configuration trajectory
given the state trajectory.
Computation of the likelihood requires estimation of the

above quantities based on the training data. p(s1) is well
modeled by the frequency of state s1, n1/Ntotal, where n1 is the
number of configurations in state 1 and Ntotal the total number
of configurations. p(st+1|st) is well modeled by the transition
frequency from state t to state t + 1 observed in the trajectories.
A simple choice for p(ct|st) that follows from the assumption
that configurations are uniformly distributed within the states is
the inverse of the phase space volume spanned by state st.
However, it is difficult to compare cluster volumes between the
different structural representations (rmsd, contact map, strand
pairings). Instead, we chose to estimate p(ct|st) as 1/nt, where nt
is the number of configurations assigned to state st. This choice
has the obvious benefit that models in different representations
can be readily compared, and the further advantage that the
likelihood of the null model (see below) is independent of the
number of states. However, the implicit assumption that
configurations are uniformly distributed in phase space (so the
volume becomes proportional to the number of configurations

in the cluster) is clearly an oversimplification. Improving the
estimate of p(ct|st) is an important area for future work.
We normalize by computing the likelihood of a null model in

which all states have equal size and the probability of all
transitions are equal. For the null model with m states and Ntotal
total configurations, the probability of observing a configuration
given a state is m/Ntotal and the probability of transitioning to
any state is 1/m, so the probability at each step of the null-
model trajectory is (m/Ntotal × 1/m) = 1/Ntotal as it should be
since all configurations are equally probable. To avoid round-off
errors, we compute the log-likelihood instead of the likelihood,
and subtract the log-likelihood of the null model, yielding the
final form of the log-likelihood shown in the figures:
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Cross-Validation Procedure. We experimented with a
number of ways to cross-validate Markov State Models using
independent trajectory data. The most rigorous is to construct
an MSM purely from the training set data, and then assign each
test set configuration to a training set microstate based on
geometric similarity. This turned out to be computationally
intractable since obtaining good statistics required many
repeated cross-validation calculations with different randomly
selected training set/test set partitions, and it was not feasible
to carry out the microstate clustering large numbers of times for
each parameter set and representation considered. We settled
on a considerably more tractable approach in which the entire
data set is clustered to obtain microstate definitions, but the
transition matrix construction and subsequent spectral
clustering to obtain macrostate definitions are based on training
set data only. Microstates observed in the test set but not in the
training set are reassigned to the closest microstate in the
training set based on geometric similarity. The model quality
metric, which we refer to throughout the rest of the paper, is
the log-probability of observing the test set data given the
model constructed from the training set data. Cross-validation
was performed a total of 1000 times for each model. One
randomly selected segment of the data comprising a total of 1%
of the total data was removed prior to transition matrix
construction and spectral clustering but after the initial
geometric clustering step, and the 99% which remained was
used to compute the transition matrix and state occupancies.
To reduce sensitivity to the original clustering results for
models with less than 10 000 microstates, the cross-validation
procedure was repeated for 4−10 different initial clusterings
obtained using different random seeds.
Likelihoods of microstate models were computed using the

microstate occupancies and microstate transition probabilities
computed from the training set. Similarly, likelihoods of
macrostate models were computed using macrostate occupan-
cies and macrostate transition matrices computed solely from
the training set.

■ RESULTS
We begin by briefly describing the steps involved in
constructing a Markov State Model (MSM) from molecular
dynamics or Monte Carlo trajectories.32,33,43 The first step
involves discretizing the simulation; the individual configu-
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rations representing trajectory snapshots are clustered based on
geometric similarity without consideration of their kinetic
proximity. The resulting clusters are called “microstates”. The
frequencies of transitions within and between microstates are
computed, populating a count matrix. Groups of kinetically
related microstates, called macrostates, are then identified from
the eigenvectors of the resulting transition matrix by Perron
clustering.42 The macrostates and transitions among them
constitute a reduced complexity description of the longer time
scale dynamics of the original system.
The process of discretizing a simulation is a nontrivial task

and involves a number of critical choices.44 If the clustering is
too coarse (too few clusters), the resulting assignments will
likely contain configurations separated by large kinetic barriers.
On the other hand, if clustering is too fine (too many clusters),
the resulting transition matrix will quickly become sparse,
resulting in bad statistics and reduced generalizability. In the
limit, each configuration is in its own microstate and the
resulting model has no predictive power. In order to assess the
choices made during assignment, a metric is needed for
assessing the extent to which the resulting MSM accurately
represents the dynamics of the system.
We have found that a simple likelihood statistic coupled with

cross-validation provides a very useful model-quality metric
(see Methods). Given a choice of distance metric and
geometric clustering threshold (number of microstates), we
partition the data into training and testing sets and compute the
log-probability of observing the test set data given the training
set data using transition matrices compiled exclusively from the
training set (see Methods).
To investigate the utility of the log-likelihood statistic to

guide MSM construction and evaluation, we used the rmsd-
based clustering approach pioneered by the Pande
group22,41,42,45,46 and others32,47,48 to build MSMs from the
200 μs MD trajectories of the WW domain from the DE Shaw

group.1 We compared the likelihood of the microstate-based
models resulting from the initial geometric clustering step to
the likelihood of macrostate models produced by lumping
microstates together using Perron clustering. Without cross-
validation, the likelihoods of both the microstate and
macrostate models increase monotonically with increasing
numbers of microstates (open symbols, Figure 1). With cross-
validation, the likelihood decreases sharply for higher number
of microstates as the predictive power of the model
(generalizability) decreases (closed symbols, Figure 1). The
macrostate models retain high likelihoods, indicating greater
generalizability even with higher numbers of microstates
(compare closed circles and triangles, Figure 1). This result
reinforces the idea, central to the motivation for MSMs, that
grouping based on kinetic connectivity is superior to clustering
based solely on geometric similarity.
The cross-validated likelihood statistic provides a metric for

evaluating alternative ways to construct macrostate MSMs.
Given a fixed number of final macrostates, the coarseness of the
initial geometric clustering is controlled by varying the number
of microstates. With increasing number of microstates, the
geometric lumping is less coarse, and correspondingly, the final
macrostate composition is more dominated by kinetic
connectivity. As shown in Table 1, all macrostate models
have higher log-likelihoods than the corresponding microstate
model with the same final number of states (Table 1, “rmsd”).
The cross-validated log-likelihood of the rmsd-based macro-
state model reaches a maximum between 1000 and 10 000
microstates, which correspond to 6.5 and 5.3 Å rmsd cluster
radii, respectively (Figure 1, closed circles). In practice, for such
a small protein system, configurations with significant differ-
ences (i.e., strand register shifts) can have rmsds much less than
5.3 Å rmsd and hence be assigned to the same microstate even
though this violates the assumption that geometric similarity
implies kinetic similarity. Rmsd-based clustering thresholds

Figure 1. Assessment of rmsd-based MSMs using the likelihood metric. Triangles, microstate models; circles, macrostate models. Open symbols
represent training set likelihoods, closed symbols, test set (cross-validated) likelihoods. The number of microstates is indicated on the x-axis; the
clustering radius decreases from 8.1 Å for the 20-microstate model to 4.4 Å for the 5 × 104-microstate model. For small numbers of microstates all
models have similar likelihoods. For more than 100 microstates, the cross-validated likelihood drops steeply but is rescued by lumping of the
microstates into macrostates. To generate the macrostate models, microstates were lumped into 20 macrostates using Perron clustering.
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below 3 Å may well be necessary to preserve kinetic
relationships, but partitioning the data this finely would result

in orders of magnitude more microstates and a poorly
determined transition matrix, decreasing the generalizability
of the model (this may be responsible for the small decrease in
likelihood for 50 000 microstates evident in Figure 1).
We reasoned that more economical models might be

obtainable using geometric similarity measures other than
rmsd to group configurations into microstates. With the aim of
building discrete-state models for much larger systems, we first
considered a variety of reduced representations in which
configurations are described by their secondary structure
pairings (see Methods section and Supporting Information).
With orders of magnitude less initial states, the resulting
macrostate models (same number of final states) had
significantly higher likelihoods (Table 1, “ss-pair”) than the
corresponding rmsd-based models (Table 1, rmsd). The
secondary structure pairing representation captures key features
of the dynamics and thus provides more kinetically relevant
microstate definitionsthis is not surprising as previous
descriptions of WW domain folding have focused on the
formation of the two hairpin structures.1,27,49,50

While the secondary structure-based models appear to be
more economical in representing the dynamics, they are unable
to describe contributions from more general interactions, like
hydrophobic core formation.35 On the other hand, rmsd-based
models are more general and the resolution of clustering is
easily controlled, but kinetically irrelevant structural elements
such as flexible loops and termini may contribute significantly
to state assignment whereas formation of hydrogen bonds
might be missed, resulting in the need for large numbers of

Table 1. Trade-off between Kinetic versus Geometric
Lumping As Measured by Log-Likelihooda

representation no. initial states no. final states log-likelihood

rmsd 20 20 0.21
100 20 0.43
1000 20 0.53
10000 20 0.55
175 20 0.68

secondary structure 175 10 0.56
175 175 0.54
20 20 0.05

K-centers contact map 100 20 0.25
1000 20 0.52
10000 20 0.31

20 20 0.84
K-means contact map 100 20 0.68

1000 20 0.63
10000 20 0.36

aFor each representation (column one), the log-likelihood (column
four) is measured as a function of the number of initial geometrically
defined states (column two) and the number of kinetically clustered
final states (column three). If the number of initial states is equal to
the number of final states, the model was constructed purely using
geometric clustering. The more initial states, the finer the partitioning
of space before the kinetic-clustering step.

Figure 2. Evaluation of MSMs using the likelihood metric. (A) Dependence of likelihood on the number of microstates. Configurations were first
grouped into the indicated number of microstates and these were then further lumped into 20 macrostates using Perron clustering. Diamonds, rmsd-
based microstate assignments; circles, K-means contact map-based assignments. Lines are manually drawn to guide the eye. (B) Dependence of
likelihood on number of macrostates. For each representation, models were constructed using the number of microstates producing the highest
likelihood in panel A (diamonds, rmsd 1000; circles, K-means contact map 100; and triangles, secondary structure pairing 175). (C) More states are
required to model short time scale dynamics. For the K-means contact map representation with 300 microstates, the dependence of the log-
likelihood on the number of macrostates is shown for a lag time of 100 ns (filled triangles) and 10 ns (open circles). The optimal number of
macrostates is higher at shorter lag times.
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states to accurately describe the dynamics. To combine the
advantages of the secondary structure and rmsd-based
representations, we explored a contact map-based representa-
tion (see Methods). We reasoned this representation would
capture strand pairings and registers, like the secondary
structure model, while remaining general by also capturing
important long-range contacts not necessarily involving hydro-
gen bonding. At the same time, such a representation would be
less sensitive to loop and termini fluctuations than rmsd-based
models.
We experimented with two clustering methods for grouping

configurations into microstates using the contact map-based
representation. The likelihoods of models constructed from
microstates obtained using the very fast greedy K-centers
method (Table 1) were similar to those of the rmsd-based
models, but not as high as the secondary structure pairing
models. We reasoned that more accurate clustering of
configurations into microstates could produce better models,
and took advantage of the fact that the contact map
representation allows a simple definition of the cluster
centerthe average of all the contact maps in a clusterand
used K-means optimization to refine the cluster boundaries
(Table 1, Figure 2A). The likelihoods of models produced
using K-means clustering were considerably higher than models
created with K-centers clustering (Table 1). Improved state
definitions, as expected, yield more predictive models.
The optimal number of microstates differs considerably in

the different representations. For the rmsd and K-centers
contact map representations, the highest likelihoods are
obtained for models with 1000−10 000 microstates. In contrast,
for the secondary structure pairing and K-means refined contact
map microstate definitions, the optimal number of microstates
is between 100 and 200, and the initial partition into
microstates represents the dynamics better for the latter

models than the former (compare Table 1 “rmsd” and “K-
means contact map”; the log-likelihoods of the K-means
contact map microstate models are similar to those of the K-
means contact map macrostate models with the same number
of states). The large numbers of microstates for the best rmsd-
based models is likely necessary to avoid excessively large
cluster radii (∼8 Å in the 20-microstate model) (see Figure 1
legend). The contact map and secondary structure pairing
models have significantly higher likelihoods while requiring
many fewer microstates probably because clustering in these
representations better preserves kinetic connectivity. Improved
clustering methods can yield significantly higher likelihood
models as illustrated by the difference in likelihood of the
contact map K-centers and K-means based models. Thus,
improved methods of rmsd-based cluster refinement45 could
perhaps yield significantly higher likelihood models than the
rmsd models constructed in this study. The relatively small
number of microstates required to build a predictive model
using the contact map and secondary structure pairing
representations (100−300) suggests that building accurate
models of the folding of larger proteins with these approaches
should be feasible.
We next considered the dependence of the likelihood on the

number of macrostates. We anticipated that the log-likelihood
would initially increase with number of macrostates due to the
improved representation of folding dynamics but subsequently
decrease due to overfitting to the training data. This was indeed
observed. As shown in Figure 2B (circles), the likelihood peaks
at 40 macrostates for K-means-refined contact assignments,
40−100 for rmsd assignments, and 20 macrostates for
secondary structure pairing-based assignments. These results
suggest that the most predictive, and hence in a sense most
accurate model of WW domain folding involves less than 100
discrete states. To investigate what effect the lag time has on

Figure 3. Comparison of microstate and macrostate trajectories in the three representations. The panels show portions of trajectories bracketing four
folding/unfolding transitions. Upper portion of panels: blue, rmsd to native structure over residues 1−34; red, rmsd to native over strand one; and
green, rmsd over strand 2. Lower portion of panels: macrostate trajectories for (first row) a 25-state K-means refined contact map microstate model,
(second row) a 20-macrostate contact map-based model (100 microstates), (third row) a 20-macrostate secondary structure-pairing-based model
(175 microstates), and (fourth row) a 20-macrostate rmsd-based model (1000 microstates). Each color represents a different macrostate.
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Figure 4. (A) Analysis of folding transitions. Discrete state representation of the 14 folding/unfolding events in the long time scale WW domain
folding simulations. In the top panel, each color represents one of the 14 unfolding−folding transitions, and the lines depict the sequence of states
visited enroute to the native state. The lower panels show contact maps of the most commonly visited states in these folding transitions. While there
is considerable heterogeneity early on, in most of the trajectories the “hairpin1” state immediately preceeds the transition to the native state. ALT
abbreviations denote alternative structures which are non-native, ALT-HAIRPIN describe alternative macrostates which are similar to either native
hairpin. U abbreviations denote macrostates with little to no regular structure. (B) Flux diagram of macrostate model constructed only from folding-
transition regions. Model shown is for the 100-microstate K-means-refined contact map microstate model which is kinetically lumped into a 20-
macrostate model (constructed from a 10 ns lag time). The individual macrostate names are the same as in part A. Width of arrows represent flux.
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the optimal number of macrostates, we decreased the lag time
from 100 to 10 ns (Figure 2C). The maximum in the log-
likelihood shifts to higher numbers of macrostates as expected
since additional states are required to model the short-time
dynamics of the system.
To obtain an intuitive feeling for the usefulness of the

different models in providing descriptions of the folding
kinetics, we compared the descriptions of the folding transitions
observed in the MD simulations provided by the contact map,
rmsd, and secondary structure-based models. For reference, we
computed for each folding transition the rmsd to native for the
global structure, the first hairpin, and the second hairpin,1,2 and
compared this to a contact map-based microstate trajectory and
macrostate trajectories produced by the highest log-likelihood
rmsd, contact map, and secondary structure pairing models
(Figure 3). In the contact map representation, there are
macrostates with either the first hairpin, the second hairpin, or
both (Figure 4), and the formation of the first hairpin and the
second hairpin is clearly evident in the contact map macrostate
trajectory (Figure 3, second row color bar). The contact map-
based microstate trajectory is very similar to the macrostate
trajectory (compare top color row with rows 1−2) as expected
given its similar log likelihood (Table 1). The secondary
structure pairing-based MSM trajectory (Figure 3, third color
bar) yields similar qualitative results, but assigns a larger portion
of the unfolded state to a single macrostate. The rmsd MSM
trajectory, constructed using the maximum log-likelihood
microstate model of 1000 microstates, does not clearly identify
either of the intermediates with just 20 macrostates (Figure 3,
fourth color bar), although a previous study identified these
intermediates in a 200-macrostate model and approximately 26
000 microstates.26 The full set of comparisons are displayed in
the Supporting Information, Figure 2.
The contact map and strand macrostate models reveal the

existence of a “kinetic-trap” state, which has a global rmsd to
native of approximately 5 Å (Figure 3C color bar rows 1−3).
The rmsd macrostate model, constructed from 1000 micro-
states, does not detect this state; instead it assigns this state to
the native macrostate (Figure 3C, bottom color bar). Further
analysis of this state shows that it persists for approximately 2
μs (Supporting Information, Figure 6B, yellow-green-colored
state at approximately 25 ms), and consists of a shifted strand-
one register but a correct strand-two register (Supporting
Information, Figure 4b). The contact map and secondary
structure pairing-based macrostate models evidently identify
metastable states that cannot easily be detected using rmsd
metrics.
We next considered how to obtain a comprehensive overview

of WW domain folding from the contact map-based macrostate
model. Previous work with MSMs utilized overall flux diagrams
showing the flow of probability density along the model. We
constructed such a model (Supporting Information, Figure 5)
built from the entire set of simulation data, which is similar to
that reported previously for the WW domain based on the same
simulation data by Pande and co-workers with multiple paths to
the native state.26 A flux diagram focused on the transition
regions (Figure 4B) had fewer connections to the native state
(4 instead of 8) which is surprising given that this subset of the
data includes all transitions between unfolded and native states.
To investigate this further, we examined the individual

folding/unfolding transitions in the context of the contact map-
based model. Figure 4 exhibits the 14 folding/unfolding
transitions observed in the trajectories in the contact map-

based models (details in the Supporting Information). We find
that many states with residual structure are traversed before
folding to native (Figure 4A). These states contain some helix
or strand secondary structure and many are compact
(Supporting Information, Figure 4). One state corresponds to
the extension of the first hairpin to pair with the N and C-
termini of the protein (Supporting Information, Figure 4M).
Other states correspond to altogether non-native strand
pairings (Supporting Information, Figure 4F,G,I,K,L). In
accordance with this variety of non-native alternative states,
we find that each non-native alternative is visited only once or
twice. For 10 of the 14 transitions (Figure 4A), we find that
folding proceeds through the first hairpin and for four of the
pathways, folding proceeds through formation of the second
hairpin intermediate.
Whereas the flux diagram represents a prediction of the

folding dynamics based on the MSM transition matrix and
computed p-fold values,47 the folding-pathway reconstruction
only uses the state assignment of the MSM model for analysis
and otherwise relies solely on the actually observed transitions
in the trajectories. While the conclusions drawn from the flux
diagram and the folding-pathway reconstruction are qualita-
tively similar (folding proceeds along a single dominant route
with formation of hairpin one), small discrepancies (the kinetic-
trap state is kinetically related to the native state in the flux
diagram but not the folding-pathway reconstruction) remain.
These discrepancies may arise because sampling is too limited,
even with the ground-breaking computing resources used for
the simulations,1 to put meaningful statistical weights on the
different folding pathways or because of errors in MSM
construction resulting from microstate misassignments (group-
ing of configurations separated by large kinetic barriers in the
same microstate).

■ DISCUSSION

We show that the likelihood of an independent test set is a
powerful metric for assessing alternative discrete state models
of protein folding based on molecular dynamics simulations. As
suggested by previous work with MSMs, we find that, when
using rmsd, grouping configurations based on their kinetic
connectivity is considerably more effective than grouping based
on geometric similarity to obtain microstates. The highest
likelihood models require on the order of 1000 to 10 000
microstates, in the range used in previous studies. We find that
contact map and secondary structure-pairing representations
are considerably more economical, achieving higher likelihoods
with many fewer microstates (100 and 175, respectively).
Furthermore, the K-means refined contact maps and strand-
pairing representations are more effective at preserving kinetic
connectivity and identify intermediates clearly.
In this paper, we used the very long MD simulations of WW

domain folding to evaluate our methodological developments.
Using the improved combination of contact map and clustering
procedure or strand-pairing-based representations, we identi-
fied a kinetic-trap state that is clearly metastable and is not
easily detected by either simpler rmsd-based metrics1 or rmsd-
based macrostate models.26 Comparing individual folding
pathways, we find considerable heterogeneity at the beginning
of the transitions, but convergence in the late stages of folding,
with the majority of the folding transitions involving formation
of the first hairpin as suggested in the initial study.1 Still more
sampling (longer MD simulations) would be required to assign
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statistical weights to the different observed folding transition
pathways.
The methods described here should be generally useful for

building discrete state models of folding dynamics from long
time scale molecular dynamics simulations. The likelihood
measure provides a means to assess alternative model
formulations, and the combination of contact map representa-
tion and cluster refinement strategy should scale considerably
better than rmsd-based clustering to larger systems. It will be
particularly interesting to use the approach outlined here to
build discrete state models based on the long time scale
simulations recently reported for a number of larger proteins by
Shaw and co-workers2we anticipate these will provide more
new insight than the model obtained here for the very simple
WW domain.
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